ST. GEORGE GIRLS HIGH SCHOOL # TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION # **MATHEMATICS 1996** #### **3 UNIT (ADDITIONAL)** #### **AND** ### 3/4 UNIT (COMMON) <u>Time Allowed</u> - Two Hours (Plus 5 minutes reading time.) ### **Directions to Candidates** - . Attempt ALL questions. - . ALL questions are of equal value. - . All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work. - . A table of standard integrals is attached. - . Board-approved calculators may be used. - . Start each question on a new page. - Return your answers in one bundle with a cover sheet. On your cover sheet write your name, mathematics class and teacher's name as well as Q1 Q2 Q3 Q4 Q5 Q6 Q7 This is a trial paper only and does not necessarily reflect either the content or format of the final Higher School Certificate examination in this subject. (a) Find $$\frac{\lim}{x \to 0}$$ $\frac{\tan}{4}$ 1 (b) On a number plane indicate the region specified by 4 $$y \le \sqrt{4-x^2}$$ and $y \ge x-4$ Your diagram should clearly show any points of intersection of the boundaries with the co-ordinate axes and with each other. (c) Find the value(s) of k for which $y = e^{kx}$ is a solution of the equation 3 $$\frac{d^2y}{dx^2} + \frac{3dy}{dx} - 4y = 0$$ $$x + \frac{x}{x+2} + \frac{x}{(x+2)^2} + \frac{x}{(x+2)^3} +$$ have a limiting sum? Find the shaded area 2 - (a) Find the largest possible (natural) domain of the following functions - 3 (ii) $y = \sin^{-1}(\log_e x)$ (b) Use the substitution u = 3x - 1 to find A $$\int_{0}^{1} \frac{1}{\sqrt{4-(3x-1)^2}} dx$$ (Give your answer in terms of π) (c) $$f(x) = x^3 + 3x^2 - 9x + 3$$ 5 - (i) Show that f(x) = 0 has a root between x = 1 and x = 2 - (ii) Taking x = 2 as a first approximation, use Newton's method to find a second approximation to this root. (iii) By means of a diagram, or otherwise, give a geometrical interpretation of the process used in (ii) and hence explain why x = I is not suitable as a first approximation to the root. **QUESTION 3** **MARKS** (a) For the curve y = f(x) it is given that $f'(x) = \cos^2 x$ and that it passes through the point $(\frac{\pi}{2}, \frac{\pi}{2})$. Find the equation of the curve. - (b) (i) How many 2- digit even numbers are there with different digits? 3 - (ii) Hence, or otherwise, find the number of 3- digit even numbers which have no repeated digits. (c) From the point P(4,0) a tangent is drawn to touch the circle $$(x-1)^2 + (y-2)^2 = 1$$ at the point T. Find the length of PT, giving geometric reason(s) for your calculations. (d) Draw a neat sketch of the curve $$y = 2 \cos^{-1}(2x)$$ (6) (a) A particle moves along a straight line so that it has displacement x, velocity v and acceleration a at time t. If $$v = 2(1+3t)^{-\frac{1}{3}}$$ and $x = 3$ when $t = 0$ - (i) find an expression for x in terms of t and hence find x when t = 21 - (ii) find an expression for a in terms of t and hence show that it can be expressed as $a = kv^n$ by finding the constants k and n. - (b) $y = \log_e(x)$ - A sketch (not necessarily to scale) of $y = log_e(x+2)$ is shown. - (i) Write down the values of m and n (the x- and y- intercepts of $y = log_e (x + 2)$) - (ii) Find the exact value of the shaded area. - (c) - By means of a diagram and written explanation, show that the equation tan x = x + I has an infinite number of solutions. (a) According to the Theory of Relativity, the mass, M kg, of an object travelling at a speed of v km/s is given by $$M = m \left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}$$ where m kg is the mass of the object when at rest and c km/s is the speed of light (a constant). When at rest, the captain of a spaceship has a mass of 80 kg. If the speed of the spaceship is increasing at a rate of 0.025c km/s/s, at what rate is the captain's mass increasing when the space ship has a speed of 0.6c km/s (ie 0.6 times the speed of light)? (b) Let $$M = \int_1^3 (\frac{2}{x} - x) dx$$ (4) - (i) Find the exact value of M - (ii) Use one application of Simpson's rule to find an approximate value of M. - (c) (i) Show that for a particle moving with acceleration a, velocity v and displacement x, acceleration can be expressed as $$a = \frac{d(\frac{1}{2}v^2)}{dx}$$ (ii) A particle moves in a straight line so that its acceleration is given by $$a = 2x - 2x^3$$ If $v = \sqrt{3}$ when x = 0 find an expression for v in terms of x. (a) Solve $2\sin^2\theta - 3\sin 2\theta = \theta$ for $0 \le \theta \le \pi$ (3) - (b) When a polynomial P(x) is divided by $x^2 1$ the remainder is R(x). (3) - (i) Explain why R(x) can be expressed in the form R(x) = ax + b (a and b constant) - (ii) It is known that 6 is the remainder when P(x) is divided by x 1 and 4 is the remainder when P(x) is divided by x + 1. Find R(x). (c)- - A piece of wire 9cm long is bent to form the hypotenuse and one side of right angled triangle XYZ (as shown in the diagram). - (i) If ZY = xcm show that the area of ΔXYZ is given by $$A \equiv \frac{3x\sqrt{9-2x}}{2^{1/4}}$$ (ii) Hence, or otherwise show that the maximum area of the triangle occurs when the wire is bent at an angle of 60°. **(6)** (a) $$y = tan^{-1} (tan x)$$ 5 - (i) Write down the domain and range of this function. - (ii) Show that $\frac{dy}{dx} = 1$ for all values of x in the domain. - (iii) Sketch the graph of $y = tan^{-1} (tan x)$. (b) Let T be the temperature of an object at time t and let D be the constant temperature of the surrounding medium. Newton's law of cooling states that the rate of change of T is proportional to T - D i.e. $$\frac{dT}{dt} = k(T-D)$$ - (i) Show that $T = D + Ce^{kt}$ (where C and k are constants) satisfies Newton's law of cooling. - (ii) A packet of meat with an initial temperature of 20°C is placed in a freezer whose temperature is kept constant at -15°C. It takes 12 minutes for the temperature of the meat to drop to 10°C. How much additional time does it take for the temperature of the meat to fall a further 10°C (i.e. to reach freezing point, 0°C)? Give your answerin minutes, correct to 1 decimal place. (iii) Draw a neat sketch of the graph of T (temperature of the meat) against time (t).